
1 Introduction

We’re going to build up to interior point methods for convex optimization. Our goal is to
solve problems of the form:

min cTx
s.t. x ∈ X

for X ⊆ Rn, convex and compact.

We call a convex function F a barrier if: lim
x→∂X

→∞.

Now for some t ∈ R+, let x∗(t) = arg min
x∈Rn

tcTx+ F (x).

The path (x∗(t))t∈R+ is the “central path” of the optimization. Intuitively, as t increases,
x∗(t) approaches x∗.

Our goal is as follows: we will optimize the function x∗(t′) with our initial point of the
optimization being a previously computed x∗(t). We will try to balance choosing a t′ large
(so that we make a lot of progress) while still choosing t′ small enought to make sure the
optimization will be extremely efficient.

The plan for the next two weeks is:

1. Characterize the region of fast convergence for Newton’s method

2. Find the maximum t′ we can choose

3. Compute x∗(0) (an initial point of our overall optimization.

We’ll do item 1 today.

2 Analysis of Newton’s Method

For the rest of this talk, we’ll assume f is continuously differentiable enough times that all
of the derivatives we write are continuous.

Newton’s method is based off of the following observation, the Taylor expansion of f at x is:

f(x+ h) = f(x) + hT∇f(x) +
1

2
hT∇2f(x)h+ o(||h||2)
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so we should probably move in the direction that minimizes

hT∇f(x) +
1

2
hT∇2f(x)h

For∇2f(x) positive definite, choosing h = −[∇2f(x)]−1∇f(x) suffices (because the derivative
of that expression is hT∇2f(x) +∇f(x)).

Thus our update rule is
xk+1 = xk − [∇2f(xk)]

−1∇f(xk)

If we start this optimization close enough to the optimum, we will converge quickly:

Theorem 1. Let f have an M-Lipschitz Hessian i.e. ||∇2f(x) − ∇2f(y)|| ≤ M ||x − y||,
and let x∗ be a local minimum of f such that ∇2f(x∗) < µIn for some µ > 0. Let x0 be a
starting point such that ||x0 − x∗|| ≤ µ/(2M).

Then Newton’s method converges to x∗ in log log 1/ε steps as ||xk+1 − x∗|| ≤ M
µ
||xk − x∗||2.

Proof. We begin with the following equation, which is an immediate corollary of FTC.

1∫
0

∇2f(x+ sh)h ds = ∇f(x+ h)−∇f(x) (1)

Plug in x∗ for x and xk − x∗ for h to get:∫ 1

0

∇2f(x+ s(xk − x∗)) · (xk − x∗) ds = ∇f(xk)−∇f(x∗) = ∇f(xk) (2)

Now consider xk+1 − x∗. We have

xk+1 − x∗ = xk − x∗ − [∇2f(xk)]
−1∇f(xk) defn of xn

= xk − x∗ − [∇2f(xk)]
−1
∫ 1

0

∇2f(x∗ + s(xk − x∗))(xk − x∗) ds by 2

= [∇2f(xk)]
−1
∫ 1

0

[
∇2f(xk)−∇2f(x∗ + s(xk − x∗))

]
(xk − x∗) ds

Where the last line follows from

xk − x∗ = [∇2f(xk)]
−1∇2f(xk)(xk − x∗) = [∇2f(xk)]

−1
∫ 1

0

∇2f(xk)(xk − x∗) ds
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Now applying Cauchy-Schwartz on the last equation we have:

||xk+1 − x∗|| ≤ ||[∇2f(xk)]
−1|| ·

(∫ 1

0

||∇2f(xk)−∇2f(x∗ + s(xk − x∗))|| ds
)
||xk − x∗|| (3)

We assumed the Hessian was Lipschitz, applying that property, we have that the integral is
at most M

2
||xk − x∗||.

By Lipschitzness (and the fact that ||A − B|| ≤ s if and only if sIn � A − B � −sIn) we
have

||∇2f(xk)−∇2f(x∗)|| ≤M ||xk − x∗||
if and only if

M ||xk − x∗||In � ∇2f(xk)−∇2f(x∗) � −M ||xk − x∗||In
Take the second of these inequalities, and we can convert to:

∇2f(xk) � ∇2f(x∗)−M ||xk − x∗||In

By our assumption on the Hessian at x∗ we have:

∇2f(xk) � ∇2f(x∗)−M ||xk − x∗||In � (µ−M ||xk − x∗||)In

We assumed the initial point x0 was close to the optimum (i.e. ||x0 − x∗|| ≤ µ/(2M)). We
claim that ||xk − x∗|| ≤ µ/(2M) as well (this is easy to verify inductively, as (we will show)
we are getting closer to x∗. Using this assumption we have:

∇2f(xk) � (µ−M ||xk − x∗||)In �
(
µ−M µ

2M

)
In =

µ

2
In

Returning to Equation 3, and plugging in the bounds on the terms we have:

||xk+1 − x∗|| ≤
(

2

µ

)
·
(
M

2
||xk − x∗||

)
· ||xk − x∗|| =

M

µ
||xk − x∗||2

3 Self-Concordant Functions

Now that we’ve done this analysis, we’re going to argue that the previous analysis was dumb.
Consider an invertable matrix A. Let f be the map of Newton’s method, and let φ map
y = Ax to f(A−1y). That is

x+ = x− [∇2f(x)]−1∇f(x) and y+ = y − [∇2φ(y)]−1∇φ(y)

3



One can show that y+ = Ax+. That is even after an affine transformation, Newton’s method
follows the same trajectory. (Newton’s method is the only algorithm we’ve seen in reading
group with this property). But with this observation, the assumption we made in the last
section that the Hessian is Lipschitz seems a little silly. It assumes we’re using some fixed
inner-product, but we just showed we can change the inner product without changing the
execution of the algorithm. Thus we’d like a different theorem that works for any inner-
product.

What’s the right way to measure a norm now? Well first we need it to not change when
we do a linear transformation, it should only care about the local geometry. That sounds
like it should involve the Hessian somehow. How should it change with the Hessian? Well
let’s consider taking the norm of the gradient. We want a smaller gradient to indicate being
close to x∗. As a thought experiment, let’s say that the gradient has some value k in two
directions. In one direction the Hessian is large, in the other it’s small. Which is more
concerning to us? It’s the one where the Hessian is small – in that direction, we’d need more
steps to decrease the gradient to 0, thus our norm should be larger in directions where the
gradient is smaller.

Thus we’ll use the following norm.

||h||x :=
√
hT∇2f(x)h

Definition 1. For X a convex set with non-empty interior, and let f be a closed, thrice-
continuously differentiable on int(X ). We say f is self-concordant (with constant M) if for
all x ∈ int(X ) and all h ∈ Rn:

∇3f(x)[h, h, h] ≤M ||h||3x

For intuition f(x) = − log x for x > 0 is self-concordant with constant 2.

A tedious limit argument can relate our new definition to barriers:

Lemma 1. If f is self-concordant then f is also a barrier.

Proof. (from Nesterov)

Consider a sequence {xk} ⊆ domf such that limk xk → x To show f is a barrier we need
to show lim f(xk) → ∞. Note that {f(xk)} is bounded below. By convexity of f , f(xk) ≥
f(x0) + 〈f ′(x0), xk−x0〉 which is at most some constant. Now suppose for contradiction, the
sequence {f(xk)} is bounded above. By convexity of f , this sequence actually has a limit,
call it f . Now we have that the sequence zk = (xk, f(xk))→ z = (x, f).

zk ∈ epif but x is not in the domain of f , thus z is not in the epigraph of f . But we assumed
f was a closed function, a contradiction.
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Our next definition will be used to define the region of very fast convergence for Newton’s
method.

Definition 2. Let f be a self-concordant function with constant 2 on X . for x ∈ int(X ) we
say λf (x) = ||∇f(x)||∗x =

√
∇f(x)T (∇2f(x))−1∇f(x) is the Newton decrement of f at

x.

The usefulness of this definition is the following lemma.

Lemma 2. If x is such that λf (x) < 1 and x∗ = arg min f(x) then

||x− x∗||x ≤
λf (x)

1− λf (x)

We won’t prove this, because Seb just skips it and the proof is long. Note that one way to
interpret this lemma is that when λf is O(ε), then ||x− x∗||x is also O(ε).

The lemma above is the key to proving the following result about Newton’s Method:

Theorem 2. If f is self-concordant with constant 2 on X and x ∈ int(X ) such that λf (x) ≤
1/4 then

λf
(
x− [∇2f(x)]−1∇f(x)

)
≤ 2λf (x)2

That is, if we inititalize Newton’s Method with x0 fitting the hypothesis then the iterates
satisfy λf (xk+1) ≤ 2λf (xk)

2. Now we see item 1 of our TODO list is satisfied by a self-
concordant function for the barrier.
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